感应电动机的功率因数——取决于什么以及它如何变化
在每台异步电动机的铭牌(铭牌)上,除其他运行参数外,其参数表示为 余弦 phi — cosfi… 余弦 phi 也称为感应电动机功率因数。
为什么这个参数叫做 cos phi?它与功率有什么关系?一切都很简单:phi 是电流和电压之间的相位差,如果绘制感应电机(变压器、感应炉等)运行过程中出现的有功功率、无功功率和总功率的图表,结果是比率有功功率到全功率的 - 这是余弦 phi - Cosphi,或者换句话说 - 功率因数。
在额定电源电压和感应电机的额定轴负载下,余弦 phi 或功率因数将简单地等于其铭牌值。
例如,对于 AIR71A2U2 发动机,功率因数将为 0.8,轴负载为 0.75 kW。但此电机的效率为79%,因此电机在额定轴负载下消耗的有功功率将超过0.75 kW,即0.75 / Efficiency = 0.75 / 0.79 = 0.95 kW。
然而,在额定轴负载下,功率参数或 Cosphi 与网络消耗的能量精确相关。这意味着该电机的总功率将等于 S = 0.95 / Cosfi = 1.187 (KVA)。其中 P = 0.95 是电机消耗的有功功率。
在这种情况下,功率因数或 Cosphi 与电机轴负载有关,因为轴机械功率不同,定子电流的有功分量也会不同。因此,在空闲模式下,即当轴上没有连接任何东西时,电机的功率因数通常不会超过 0.2。
如果轴负载开始增加,则定子电流的有功分量也将增加,因此功率因数将增加,在接近标称的负载下,功率因数约为 0.8 - 0.9。
如果现在负载继续增加,即给轴加载高于标称值,则转子将减速,增加 滑 s,转子的感应电阻将开始起作用,功率因数将开始下降。
如果电机在一定时间段内空转,那么可以采取降低外加电压的方法,例如从三角形切换到星形,则绕组的相电压将降低 3 倍的根,来自空转转子的感性分量将减少,而定子绕组中的有功分量将略有增加。因此,功率因数会略有增加。
原则上,由交流电驱动的系统,如异步电动机,除了有源、感性和容性组件外,总是具有,因此,每半个周期,一定部分的能量返回到网络,即所谓的 无功功率Q.
这一事实给电力供应商带来了问题:发电机被迫向电网提供全功率 S,电网返回发电机,但电线仍然需要合适的横截面来提供全功率,当然还有寄生热来自无功电流的电线来回循环......原来需要发电机提供全功率,其中一些基本没有用。
在纯有源形式下,发电厂的发电机可以为用户提供更多的电力,为此,功率因数必须接近于 1,即在 Cosphi = 1 的纯有源负载中。
为了保证这样的条件,一些大企业安装 无功补偿装置,即当功率因数降低时自动与异步电动机并联的线圈和电容器系统。
事实证明,无功能量在感应电机和给定装置之间循环,而不是在发电厂中的感应电机和发电机之间循环。因此,异步电动机的功率因数几乎达到 1。